Arriba: Índice

Supernovas

Particle Physics and Astronomy Research Council

Royal Greenwich Observatory
_________________________________________________________


Cuaderno de Información No. 63: 'Supernovas'.


Qué es una Supernova?

Las supernovas son vastas explosiones en las que estalla una estrella completa. Se ven más comúnmente en galaxias distantes, como 'nuevas' estrellas que aparecen cerca de la galaxia de la que son miembros. Son extremadamente brillantes, rivalizando, por unos pocos días, con la emisión de luz combinada de todo el resto de las estrellas en la galaxia.

Dado que la mayoría de las supernovas ocurren en muy distantes galaxias, son demasiado tenues, incluso para los grandes telescopios, como para poder estudiarlas en gran detalle. Ocasionalmente ocurren en galaxias cercanas, y entonces es posible un estudio detallado en muchas diferentes bandas de ondas.

La última supernova vista en nuestra galaxia, el sistema de la Vía Láctea, fue vista en 1604 por Kepler, el famoso astrónomo. La más brillante desde entonces fue la supernova 1987A, en la Gran Nube Magallánica, una pequeña galaxia satélite de la Vía Láctea. La más brillante supernova en el cielo norteño en 20 años fue la supernova 1993J, en la galaxia M81, que fue vista por primera vez el 26 de Marzo de 1993.

Las supernovas se clasifican en dos tipos diferentes por sus distintas historias evolutivas. Las supernovas de Tipo I resultan de la transferencia de masa dentro de un sistema binario que consiste de una estrella enana blanca y una estrella gigante en evolución. Las supernovas de Tipo II son, en general, masivas estrellas individuales que llegan al fin de sus vidas en una forma muy espectacular.

Primero discutiremos las supernovas de Tipo II, y entonces, brevemente, las de Tipo I.


Por qué Ocurren las Supernovas de Tipo II?

La estructura de todas las estrellas está determinada por la batalla entre la gravedad y la presión de radiación resultante de la generación interna de energía. En las etapas primitivas de la evolución de una estrella, la generación de energía en su centro proviene de la conversión de hidrógeno en helio. Para estrellas con masas de cerca de 10 veces la del Sol, esto continúa durante cerca de diez millones de años.

Luego de este tiempo, todo el hidrógeno en el centro de tal estrella se agota, y el 'quemado' de hidrógeno sólo puede continuar en una capa alrededor del núcleo de helio. El núcleo se contrae bajo la gravedad, hasta que su temperatura es lo suficientemente alta como para que pueda ocurrir el 'quemado' del helio en carbono y oxígeno. La fase de 'quemado' del helio dura cerca de un millón de años, pero eventualmente el helio en el centro de la estrella se agota, y continúa, como el hidrógeno, 'quemándose' en una capa. El núcleo de nuevo se contrae, hasta que está suficientemente caliente como para la conversión de carbono en neón, sodio y magnesio. Esto dura por cerca de unos 10 mil años.

Este patrón de agotamiento del núcleo, contracción, y 'quemado' de capas, se repite mientras el neón es convertido en oxígeno y magnesio (durante unos 12 años), el oxígeno se convierte en silicio y azufre (cerca de 4 años), y finalmente el silicio se convierte en hierro, en cerca de una semana.

No puede obtenerse más energía por fusión una vez que el núcleo ha llegado al hierro, así que no hay presión de radiación para balancear la fuerza de la gravedad. El colapso ocurre cuando la masa de hierro alcanza 1,4 masas Solares. La compresión gravitacional calienta el núcleo hasta un punto en el que decae endotérmicamente en neutrones. El núcleo colapsa desde la mitad del diámetro de la Tierra hasta cerca de 100 Km en unas pocas décimas de segundo, y en cerca de un segundo se convierte en una estrella de neutrones de 10 Km de diámetro. Esto libera una enorme cantidad de energía potencial, principalmente en forma de neutrinos, que transportan cerca del 99% de la energía.

Se produce una onda de choque que pasa, en dos horas, a través de las capas externas de la estrella, causando que ocurran reacciones de fusión. Estas forman los elementos pesados. En particular el silicio y el azufre, formados poco antes del colapso, se combinan para producir níquel y cobalto radioactivos, que son responsables por la forma de la curva de la luz luego de las primeras dos semanas.

Cuando la onda de choque llega a la superficie de la estrella, la temperatura alcanza los 200.000 grados, y la estrella explota a cerca de 15.000 Km/seg. Esta envoltura en rápida expansión se ve como la veloz elevación inicial del brillo. Es más bien como una enorme bola de fuego que se expande rápidamente y se adelgaza, permitiendo ver la radiación de más adentro, cerca del centro de la estrella original. Subsecuentemente, la mayor parte de la luz proviene de la energía liberada por la descomposición radioactiva del cobalto y el níquel producidos durante la explosión.


Supernovas de Tipo I:

Las supernovas del Tipo I son objetos aún más brillantes que aquellos del Tipo II. Aún cuando el mecanismo de la explosión es algo similar, la causa es muy diferente.

El origen de una supernova del Tipo I es un antiguo, evolucionado sistema binario, en el que al menos un componente es una estrella enana blanca.
Las enanas blancas son muy pequeñas y compactas estrellas que han colapsado hasta un tamaño cercano a un décimo del tamaño del Sol. Ellas representan la etapa evolutiva final de todas las estrellas de poca masa. Los electrones en una enana blanca están sujetos a restricciones de la mecánica cuántica (la materia se llama degenerada), y este estado sólo puede ser mantenido para masas estelares menores que cerca de 1,4 veces la del Sol.

El par de estrellas pierde momento angular, hasta que están tan cercanas que la materia de la estrella compañera es transferida a un grueso disco alrededor de la enana blanca, y es gradualmente incorporada por la enana blanca.
La masa transferida desde la estrella gigante, aumenta la masa de la enana blanca hasta un valor significativamente mayor que el valor crítico, y como consecuencia de ello, toda la estrella colapsa, y la 'combustión' nuclear del carbón y el oxígeno en níquel, produce suficiente energía como para volar la estrella en pedazos. La energía liberada subsecuentemente es, como en el caso del Tipo II, proveniente de la descomposición radioactiva del níquel, a través del cobalto, en hierro.


Después de la Explosión:

La evolución de la supernova después de la explosión, es una en la cual el material eyectado continúa expandiéndose en una capa alrededor del sitio progenitor, mientras que, en las supernovas del Tipo II, la estrella de neutrones central permanece. El material eyectado continúa expandiéndose durante miles de años, hasta que choca con gases y nubes de polvo en el espacio interestelar circundante. Allí el gas eyectado se mezclará con el material interestelar, y eventualmente podrá ser incorporado a una nueva generación de estrellas.


El Origen de los Elementos:

Las teorías del Big Bang han predicho exitosamente las abundancias de los elementos 'livianos'. Las primeras estrellas estaban compuestas de hidrógeno, helio, una muy pequeña cantidad de litio y berilio, y casi nada más. Algunas de estas estrellas se convirtieron en supernovas, y distribuyeron los elementos 'pesados', hechos en sus interiores, en el ambiente interestelar. Subsecuentes generaciones de estrellas han aumentado aún más la proporción de los elementos 'pesados', como el carbono, oxígeno, fósforo y hierro.

Es un pensamiento desembriagante, el de que todos los elementos pesados que encontramos, fueron formados de esta manera, en el centro de estrellas, y que sin tales violentas explosiones, nosotros no existiríamos.


Producido por el Departamento de Servicios de Información del Royal Greenwich Observatory.

PJA Miércoles Abril 17 13:26:06 GMT 1996

webman@mail.ast.cam.ac.uk


Actualizada: Septiembre 8 '97, Junio 26 '14

Optimizada para ser vista en fuente Verdana.
Ver Sobre las Páginas en el Web del Observatorio ARVAL.

Regreso: ARVAL - Cuadernos del RGO

Mensajes:
Comunicaciones
Valid HTML 4.01!